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The onset of liquid entrainment during discharge from large reservoirs containing a stratified 
mixture of two immiscible fluids through a side slot of a finite width is considered 
theoretically. A previously reported analysis in which the slot was approximated as a 
two-dimensional line sink has been extended to account for the finite width of the slot. 
The model resulting from the present analysis is expressed in terms of two simple algebraic 
equations suitable for hand calculations. According to the present results, the ratio of the 
critical height to the slot width is dependent only on the Froude number. Numerical results 
show that the present model approaches the correct physical limits at low Froude numbers 
and it converges to the predictions of the previously reported simple model at high Froude 
numbers. 
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I n t r o d u c t i o n  

The development of experimental correlations and theoretical 
models for the accurate prediction of the flow rate and quality 
during two-phase discharge through small breaks in pipes has 
received considerable attention in the recent literature. This 
interest is due to the relevance of this topic to nuclear reactor 
safety in connection with postulated loss of coolant accidents. 
Two important phenomena were identified by Zuber I that can 
have a strong influence on the discharging flow through breaks; 
these are liquid entrainment and gas pull-through. Empirical 
formulas correlating the onsets of these two phenomena were 
reported recently 2-6 for different break orientations, flow 
rates, and gas-l iquid combinations. As well, theoretical models 
were developed for the prediction of discharge flow rate and 
quality. 7's All the results reported 2-s correspond to breaks 
that can be simulated as circular orifices. 

In the present investigation, the onset of liquid entrainment 
during discharge from large reservoirs through side slots is 
considered analytically. This break geometry is of significant 
practical importance (e.g., longitudinal cracks in pipes); how- 
ever, so far, it has received limited attention. The flow situation, 
shown schematically in Figure 1, considers a stratified mixture 
of two immiscible fluids (densities p and p + Ap) contained in 
a large reservoir with a horizontal slot of width d in the vertical 
wall of the reservoir. This slot is located in the region of the 
wall adjacent to the lighter fluid. If a discharge of a rate q per 
unit slot length is induced while the distance between the slot's 
centerline and the interface is sufficiently large, only the lighter 
fluid will be present in the discharging flow and the whole 
interface will be flat. By gradually decreasing the height of the 
slot's centerline, the interface gradually deflects upward in the 
vicinity of the wall until a critical height h is reached where 
traces of the heavier fluid are detected in the discharging flow. 
This incidence is referred to as the onset of liquid entrainment 
and the objective of this investigation is to develop a theoretical 
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correlation for h as a function of q,d, and other relevant 
parameters. 

The only other theoretical investigation of the problem posed 
is the one reported by Craya. 9 In his simplified analysis, Craya 
simulated the slot as a two-dimensional (2-D) line sink and 
obtained the following correlations: 

hid = 0.699 Fr  2/3 (1) 

and 

s = 2h/3 (2) 

where s is the distance between the tip of the deflected interface 
and the slot's centerline (Figure 1 ), and Fr  is Froude number 
given by 

v~ 
Fr - (3a) 

with 

v~ = q/,~ (3b) 

It is evident that Equations 1 and 2 do not reach the 
appropriate limits as Fr  approaches zero. At the limit Fr = 0, 
these equations give h = s = 0, while the physics of the problem 
suggests h = s = d/2 at this limit. Therefore, the accuracy of 
Equations 1 and 2 is doubtful at low values of Fr and this 
behavior is attributed to the line-sink assumption used else- 
where. 9 In the present study, a more complete analysis is 
developed, taking into consideration the finite size of the slot, 
thus making the results applicable to the whole range of Fr. 

A n a l y s i s  

In the present flow situation, the lighter fluid is in motion while 
the heavier fluid is at rest. The dominant forces are the inertia 
and gravity forces, while the effects of viscosity and surface 
tension are assumed to be negligible. Steady, incompressible, 
potential flow is assumed in the lighter fluid, and equilibrium 
of the interface is controlled by a balance between inertia and 
gravity forces. In determining the onset of liquid entrainment, 
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Figure I Schematic diagram of the flow situation 

the present analysis follows Craya's 9 approach where equilibrium 
of the interface and the velocity field in the lighter fluid are 
determined first and then equality of the velocity and its 
gradient at linking point B (Figure 1 ) are later imposed as 
conditions for the onset of the phenomenon. 

Equil ibrium of  the interface 

Applying Bernoulli equation on a streamline coincident with 
the interface from the side of the lighter (moving) fluid, we get 

p V  2 
P + + pot  = C (4) 

2 

Along the same streamline from the side of the heavier 
(stationary) fluid, Bernoulli equation gives 

e + (p + A p ) o t  = C (5) 

subtracting Equation 5 from Equation 4, we get 

V 2 Ap 
- Ot (6) 

2 p 

Linking point B corresponds to the location on the interface 
where t = h - s. Therefore, the velocity at this point is given by 

v l  av 
- # ( h - s )  (7) 

2 p 

Velocity f ield in the l ighter f lu id 

The presence of the stationary fluid is neglected in this part of 
the analysis. Therefore, the flow field of the lighter fluid is 
treated as a semi-infinite medium extending over 0 < x < oo 
and - oo < y < ~ ,  as shown in Figure 2. The medium is also 
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Figure 2 Flow domain of the lighter fluid 

of infinite extent in the direction normal to the page. Flow 
within the medium is caused by a discharge with a uniform 
velocity Vd from the slot situated at x = 0 and y = +_d/2. 
Consequently, we have a 2-D problem with Vx and Vy repre- 
senting the velocity components in the x- and y-directions, 
respectively. Symmetry exists about the x-axis; therefore, the 
solution is required only for 0 < y < oo. Based on the assump- 
tions stated earlier, the flow field within the medium can be 
derived from the potential flow theory. 

Applying the continuity equation, we get 

0vx 0vy 
- - + - - = 0  (8) 
0x 0y 

Introducing a scalar potential function 4~, such that 

04, 04~ and V y = - -  (9) Vx = 0y 

we get the well-known Laplace equation 
02@ 02~ 
Ox 2 t- - -  = 0 Oy 2 

Equation 10 is subject to the 
conditions : 

0¢ 
at x = O ,  - - =  -Va,  

Ox 

= 0 ,  

(10) 

following list of boundary 

d ( l l a )  

Y>~ 

at y = 0, - 0 ( l lb )  
0y 

a s x ~ o o  or y ~ o o ,  ~bisfinite ( l lc )  

A solution for Equation 10 satisfying boundary conditions 1 lb 

N o t a t i o n  

C Arbitrary constant used in Equations 4 and 5 (N/m 2 ) 
d Slot width (m) 
f Arbitrary function appearing in Equations 12-14 

(m3/s) 
Fr Froude number defined by Equation 3a 
g Gravitational acceleration (m/s 2) 
h Critical height (m) 
P Pressure (N/m 2) 
q Rate of discharge per unit slot length (ma/m. s) 
s Distance defined in Figure 1 (m) 
t Distance defined in Figure 1 (m) 

V Local velocity (m/s) 
V d Discharge velocity (m/s) 
Vx x-component of local velocity (m/s) 
V~ y-component of local velocity (m/s) 
x, y Coordinate system (m) 

Greek symbols 
Ap Density difference between two fluids (kg/m 3) 
r/ Dimensionless parameter defined by Equation 27 
2 Eigenvalue (I/m) 
p Density (kg/m 3) 
~b Potential function (m2/s) 
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and 1 lc can be written as 

~o = f(2)cos(2y)e-~d2 (12) 

where f is an arbitrary function. In order to determine f, we 
substitute the remaining boundary condition 1 la into solution 
12. Thus, 

f )  2f(2)cos(2y)d2=V~,=O, Y>~0<Y<~}d (13) 

Using Fourier cosine integrals, we obtain 

2 ~ a/2 
)-f(2) = -- Vd COS(2y) dy 

~ , JO  

from which it is easy to obtain this formulation for the arbitrary 
function f ,  

f (2 )  = 2V~ sin()-d/2) (14) 
rt ).2 

Substituting Equation 14 into Equation 12, we get the following 
final formulation for the potential function within the field : 

ck = 2Va f )  sin().d/2)cos().y)e_a~d) - ~- ~ (15) 

The quantity that we are mainly interested in is the velocity 
component Vy along the wall (x = 0). This can be obtained by 
substituting Equation 15 into Equation 9, thus 

Vyl~,= ° = ~y x=o = _2Va~z f?sin(2d/2)sin(Xy)2 d2 (16) 

The integral in Equation 16 can be determined in closed form 
resulting in 

Vr],,=o/Vn=_~ln(Y/d-1/2~ ~ \y/d + 1/21 '  ly/dl > 1/2 (17) 

It is to be noted that Equation 17 satisfies the condition of 
symmetry, i.e., Vrlx=o(y ) = -Vylx=o( -y  ). Also, the edges of 
the slot (y = +_d/2) are points of singularity that, fortunately, 
do not pose any problem in the subsequent analysis. 

For comparison purposes, it is worthwhile to point out that 
the line-sink assumption adopted by Craya 9 results in the 
following velocity profile along the wall: 

Gl~=o/V~ = - ( 1 / ~ ) / ( y / d )  (18) 

In exploring the effect of the slot dimension, Craya 9 suggested 
the following approximate velocity field based on the contraction 
of the emerging jet : 

()[()() ( 1 , 2 ,I.-o)q 
Vy],~=o/Va=- ~ d + ~+~ tan-~ n + 2  Va / J  

119) 

Craya noted that the term distinguishing Equation 19 from 
Equation 18 diminishes as ly/dlincreases. Accordingly, velocity 
profile Equation 18 was used in developing correlations 1 and 
2, with the understanding that these correlations are not affected 
by the dimension of the slot as long as hid does not fall below 3 
or 4. 

Using the velocity profile given by Equation 17, the kinetic 
energy at linking point B, located at x = 0 and y --- - s ,  can 

be expressed as 

V~_  V2a ~ l n ( S / d -  1/2"]] 2 
2 2r~2[_. \ s / d T 1 / 2 / J  

(20) 

The cr i t ical  he igh t  

We now have two expressions for V~/2, given by Equations 7 
and 20, applicable at point B, which links the interface with 
the wall of the reservoir. Figure 3 shows a graphic representation 
of these two expressions for fixed values of Va, 9, P, Ap, and d. 
Under these conditions, Equation 20 provides a specific relation 
between V~/2 and s represented by the curve in Figure 3, while 
Equation 7 produces a set of parallel straight lines whose 
locations depend on the value of h. For large values of h, the 
straight line and the curve do not intersect, while two points 
of intersection are possible with small values of h. There is one 
value of h that produces a single intersection with the straight 
line given by Equation 7 forming a tangent to the curve given 
by Equation 20. The hypothesis in this analysis (similar to 
Craya 9 ) is that this value of h corresponds to the critical height 
for the onset of liquid entrainment and it can be determined 
by equating V~n/2 given by Equations 7 and 20 and their first 
derivative with respect to s. Accordingly, at the onset of liquid 
entrainment, we have 

P 2=2 L ks/d + 1/2JJ  

and 

r. ' q 
P O = ~ [ ' n k ~  ~ 1/2JJE(s/a)' - 1/4 J (22) 

Nondimensionalizing, using definition 3a for Froude number, 
the following final correlations can ~ developed 

h s 1 (Fr)Z[ ln(S /d-  1/2)] 2 (23) 
L 

and 
in(S/a + 1/2)  _ (s/a) 2 - 1/4 

k;)~ C i/2/ ~/~)~ (24) 

Equations 23 and 24 provide th~ necessary relations for 
determining h/d and s/d corresponding to any given value of 
Fr. This interesting feature, whereby both h/d and s/d are 
de~ndent only on Fr, is similar to Equations 1 and 2. With a 
given Fr~ an iterative procedure is necessary for determining 
s/d from Equation 24, which is then substituted in Equation 

2 
V 8 

2 

Figure 3 

==°::'r;°' 

~ Eq. (20) 

~ 

$ 

Behavior of  V~/2 versus s 
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23 for evaluating hid. It can be easily verified from these 
equations that both s/d and hid approach the limiting value 
of 1/2 as Fr approaches zero. As Fr increases, the predictions 
of Equations 23 and 24 gradually approach those of Equations 
1 and 2, as shown later. ' 

Following the procedure outlined previously, correlations of 
the onset of liquid entrainment were also developed using 
velocity profile 19 suggested by Craya. 9 Details of the derivation 
are not presented here ; however, the final result is given by the 
following dimensionless relations: 

h s ~ [ (~__~ + 2)2r/2 -- ~ 2 ] 

d d =  2n + 2 ) 2 r / 2 ~  5 (25) 

and 

+ ~ 2  t a n - l ( ~ . - l ' ]  (26) S _ _ ~ ]  

d n n + 2  k n + 2  ~ /  

where 

[(; ;)7 ~ = Pr 2 -- (27) 

Specifying a value for ~, sld ~a~ be determined from Eq~atio~ 
26, hid f ro~  Equation 25, and Fr from Equatio~ 27. Therefore, 
sld and hid are both dependent only on Fr, similar to the 
model g i v ~  by Equations 23 and 24. The lower l imit ~ : 
~ i ( ~  + 7) corresponds to sid : h /~ : l / l  ana Fr  : 0. 

N u m e r i c a l  resu l ts  a n d  d i s c u s s i o n  

Using the equations derived previously, computations were 
made in order to illustrate the effect of the slot width. Figure 4 
shows the three velocity profiles ( V~ix= 0/Va) given by Equations 
17-19 along the wall underneath the slot. Beyond ly/dl of 
about 2.5, the three profiles are practically identical. The 
deviation between the profile developed in the present analysis 
(Equation 17) and the one suggested by Craya 9 is very small 
for all y/d. It is the difference between the present velocity 
profile and the one corresponding to the line-sink assumption 
over the zone 0.5 < ly/dl < 2.5 that is significant for this study. 

I I I I ~ I i I I I I I 

0.51 rEdle of S lo t  - - ' - - ~  . . . . .  
. . . .  =_ . . . . . . . .  ~ _ _ _  . . . . . . .  

Eq. 1 1 8 ) ~  

- 1 . 0  

"t~ 

~ - 1 . 5  - -  

-2 .0  

-2.5 ~ 

- a . O 0  ~1 I ~ I ~ ~ ~ I ~ I ~ I 
0.2 0 .4  ,.2 

v,l..o/V, 
F i g u r e  4 Velocity profiles along the wall underneath the slot 
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Figure 6 Percentage deviation from Craya's ~ model 

Figure 5 shows the behavior of h/d as a function of Fr. The 
present model, given by Equations 23 and 24, and the model 
derived from Craya's 9 suggested velocity profile, given by 
Equations 25 and 26, produce nearly identical results. Both 
of these models approach the physically appropriate limit of 
hid = 0.5 at Fr = 0, and they converge to the simplified model 
given by Equation 1 at larger Ft. The deviation between the 
present model and Equation 1 is quantified in Figure 6. In this 
figure, h o refers to the value of h calculated from Equation 1. 
The magnitude of this deviation is about 244 percent at Fr = 0.1, 
22.8 percent at Fr = 1, and 1.2 percent at Fr = 10. Beyond 
Fr = 10, which corresponds to h/d = 3.28 and s/d = 2.22, the 
error in using Equations I and 2 is negligible. This value of 
s/d is consistent with Figure 4, which shows small differences 
in the velocity profiles beyond ly/dl of about 2.2. 

For completeness, the variation of s/h with Fr is presented 
in Figure 7. This ratio approaches one as Fr approaches zero 
and converges to 2/3 for Fr > 10. 

The possibility of comparing the present theoretical predic- 
tions with published experimental data was given careful 
consideration. As mentioned earlier, the results 2-s pertain to 
circular orifices and, therefore, cannot be compared with the 
present analysis. The only experimental investigation, to the 
authors' best knowledge, in which the present break geometry 
of a horizontal slot was considered is the one by Gariel. l° 
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Unfortunately, Gariei did not report the slot width d used in 
his experiment, which is a crucial parameter in the present 
analysis. The results were reported graphically in terms of h 

versus q x / ~ . l °  Without knowing d, the Froude number cannot 
be determined and the present model given by Equations 23 
and 24 cannot be solved. Further experiments are recommended 
for this important break geometry. 

C o n c l u d i n g  r e m a r k s  

A commonly used model for the prediction of the onset of liquid 
entrainment from side slots is the one developed by Craya 9 
and given by Equations 1 and 2. This model was simplified by 
treating the slot as a 2-D line sink. The present analysis extends 
Craya's model 9 to slots of finite width and succeeds in developing 
simple algebraic equations for predicting the critical height h. 
One interesting feature of the present model is that, irrespective 
of the width of the slot d, the ratios hid and s/d are dependent 
only on Froude number. Also, beyond Fr = 10 the present 

model closely approaches Craya's simplified model. 9 However, 
the present model is recommended for Fr < 10 where it is 
demonstrated that significant deviations exist between the two 
models. 
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